Recursion

Recursion

- To use recursion is to program using recursive methods-that is, to use methods that invoke themselves.
- A recursive method is one that invokes itself directly or indirectly.
- Case Study: Computing Factorials

$$
\begin{aligned}
& 0!=1 ; \\
& n!=n \times(n-1)!; n>0
\end{aligned}
$$

Computing Factorial

* Let factorial(n) be the method for computing \mathbf{n} !.
* If you call the method with $\mathbf{n}=\mathbf{0}$, it immediately returns the result.
* The method knows how to solve the simplest case, which is referred to as the base case or the stopping condition.
* If you call the method with $\mathbf{n}>\mathbf{0}$, it reduces the problem into a subproblem for computing the factorial of $\mathbf{n - 1}$.
* The subproblem is essentially the same as the original problem, but it is simpler or smaller.

Computing Factorial

$$
\begin{aligned}
\text { factorial(4) } & =4^{*} \text { factorial(3) } \\
& =4^{*}(3 * \text { factorial(2)) } \\
& =4^{*}\left(3^{*}(2 * \text { factorial(1) })\right) \\
& =4^{*}\left(3^{*}(2 *(1 * \text { factorial(0) }))\right) \\
& \left.=4^{*}\left(3^{*}(2 *(1 * 1))\right)\right) \\
& =4^{*}\left(3^{*}(2 * 1)\right) \\
& =4^{*}\left(3^{*} 2\right) \\
& =4^{*}(6) \\
& =24
\end{aligned}
$$

factorial(n)

```
int factorial(int n) {
        if ( }\textrm{n}==0)\quad// base cas
            return 1;
    else // recursion
        return n * factorial(n-1);
}
```

Notes:

- For a recursive method to terminate, the problem must eventually be reduced to a stopping case, at which point the method returns a result to its caller.
- If recursion does not reduce the problem in a manner that allows it to eventually converge into the base case or a base case is not specified, infinite recursion can occur. The method runs infinitely and causes a StackOverflowError.

Invoking factorial(4)

Step 5: return 1

Fibonacci Numbers

Fibonacci series:	0	1	1	2	3	5	8	13	21	34	55	$89 \ldots$
indices:	0	1	2	3	4	5	6	7	8	9	10	11

$\mathrm{fib}(0)=0$;
$\mathrm{fib}(1)=1$;
fib(index) $=$ fib(index -1) + fib(index -2); index $>=2$

$$
\begin{aligned}
\operatorname{fib}(3) & =\mathrm{fib}(2)+\mathrm{fib}(1) \\
& =(\mathrm{fib}(1)+\mathrm{fib}(0))+\mathrm{fib}(1) \\
& =(1+0)+\mathrm{fib}(1) \\
& =1+\mathrm{fib}(1) \\
& =1+1=2
\end{aligned}
$$

Fibonnaci Numbers, cont.
public static long fib(long index) \{
if (index == 0) // Base case return 0;
else if (index == 1) // Base case return 1;
else // Reduction and recursive calls return fib(index - 1) + fib(index - 2); \}

Characteristics of Recursion

All recursive methods have the following characteristics:

The method is implemented using an if-else or a switch statement that leads to different cases.
\square One or more base cases (the simplest case) are used to stop recursion.
E Every recursive call reduces the original problem, bringing it increasingly closer to a base case until it becomes that case.

Characteristics of Recursion

* In general, to solve a problem using recursion, you break it into subproblems.
* If a subproblem resembles the original problem, you can apply the same approach to solve the subproblem recursively.
This subproblem is almost the same as the original problem in nature with a smaller size.

Problem Solving Using Recursion

Let us consider a simple problem of printing a message for n times.

* You can break the problem into two subproblems:
- one is to print the message one time and the other is to print the message for $\mathrm{n}-1$ times.
- The second problem is the same as the original problem with a smaller size.
- The base case for the problem is $\mathrm{n}==0$. You can solve this problem using recursion as follows:

```
public static void nPrintln(String message, int times) {
    if (times >= 1) {
                System.out.println(message);
                nPrintln(message, times - 1);
    } // The base case is times == 0
}
```


Think Recursively

Many of the problems can be solved using recursion if you think recursively.
For example, the palindrome problem can be solved recursively as follows:

```
public static boolean isPalindrome(String s) {
    if (s.length() <= 1) // Base case
        return true;
    else if (s.charAt(0) != s.charAt(s.length() - 1)) // Base case
        return false;
    else
        return isPalindrome(s.substring(1, s.length() - 1));
}```

